

Scavenger Wells Stop Saltwater Intrusion in Baton Rouge

Frank T.-C. Tsai, Ph.D., P.E.
Associate Professor
Department of Civil and Environmental Engineering Louisiana State University

LOUISIANA WATER QUALITY TECHNOLOGY CONFERENCE TWENTY FOURTH ANNUAL CONFERENCE PROGRAM DECEMBER 14-15, 2010 ALEXANDRIA - BATON ROUGE, LOUISIANA

LSL

Acknowledgements

- Baton Rouge Water Company

 Eugene Owen, Pat Kerr, and Dennis McGehee
- USGŠ
 - Dan Tomaszewski, John Lovelace, and Jason Griffith, and Charles Demas
- · Louisiana Geological Survey
- Douglas Carlson
- Department of Natural Resources
- Thomas Van Biersel
- Capital Area Ground Water Conservation Commission
 - Don Dial
- Owen & White Inc.
 - Randy Hollis and Adam Smith
- Funding
 BRWC, CAGWCC, NSF, USGS-NIWR, and LWRRI

ÂLSU **Outline** • Saltwater intrusion model development/calibration - Model calibration: 1/1/1945 - 1/1/2010 · Saltwater intrusion prediction - Model prediction: 1/1/2010 - 1/1/2060 Saltwater intrusion stopping Scavenger wells: 1/1/2010 – 1/1/2060 Recommendations Year (19xx)

Saltwater intrusion model

• Data

Groundwater withdrawal rates (BRWC: 1953-1974. CAGWCC: 1974-2009)

13/4-20U9)

Groundwater head data (USGS)

Electrical resistivity log data (USGS, LGS)

USGS/DOTD reports and CAGWCC Newsletters (connector well: 0.684 mgd starting in April 1999)

Model components

Modeling area and grid size (~50 m by 50 m around the cone of depression)
 Time-varied boundary conditions
 Initial conditions (1/1/1945)

- milea conditions (1/1/1943)
- Aquifer parameters (aquifer thickness, specific storage, hydraulic conductivity, dispersivity, porosity, and BR fault permeability)
- Sinks and sources (pumping wells and connector well)
- Solver (MODFLOW, Harbaugh et al., 2000)
- Solver (MT3DMS, Zheng and Wang, 1996)
- Uncoupled approach

<u>Î</u>LSU

MODFLOW parameters			
Parameter	Value	Unit	
Hydraulic conductivity for the "1,500-foot" sand and "1,200-foot" sand	55.0	m/day	
Specific storage	2.2104×10 ⁻⁵	m-1	
Horizontal barrier from the west boundary extending eastward to 7,821m (intersection of Wards Creek and Corporate Blvd)	8.0×10 ⁻⁴	day-1	
Horizontal barrier for rest of the fault line	3.5×10 ⁻⁴	day-1	
Initial head (01/01/1945) north of the fault	19.5	m	
Initial head (01/01/1945) south of the fault	16.5	m	

MT3DMS parameters		
Parameter	Value	Unit
Initial concentration distribution (01/01/1945), south of the fault	5500	mg/L
Initial concentration distribution (01/01/1945), north of the fault	0	mg/L
Constant concentration at southern boundary	5500	mg/L
Porosity	0.27	
Longitudinal dispersivity	180	m
Transverse dispersivity	0.36	m
Diffusion coefficient	0	m²/day

Scavenger wells

Monthly pumpage for 2010-2059 EB-371B EB-413 EB-504 92 89 50 50 5440.6 1.437 Lula-17 Lula-18 EB-510 58 5644.0 1.491 993.9 4793.6 5989.9 4137.4 1789.6 EB-657 54 0.263 Lula-19 Lula-20 Government-06 Robin-01 Parish Water N. 45th-03 EB-658 EB-726 EB-771 EB-773 53 53 89 11 1.266 1.583 1.093 0.473 84 171 1.692 1.360 1.104 6403.9 Lula-22 Lula-23 5146.0 4178.9 143 51 167 84 BRWC 164 96 1787.3 0.472 EB-1293 -2589.0 -0.684 Total: 12.5 MGD

No action

No action

FB-807A

FB-917

FB-917

FB-917

FB-918

Scavenger well scenarios (starting 1/1/2011)		
Scenario	Scavenger well operation (SWOP)	
1	One scavenger well with 0.25 mgd	
2	One scavenger well with 0.50 mgd	
3	One scavenger well with 0.75 mgd	
4	One scavenger well with 1.00 mgd	
5	Two concurrent scavenger wells: Well #1 with 0.25 mgd and Well #2 with 0.25 mgd	
6	Two concurrent scavenger wells: Well #1 with 0.25 mgd and Well #2 with 0.50 mg	
7	Two concurrent scavenger wells: Well #1 with 0.50 mgd and Well #2 with 0.25 mg	
8	Three concurrent scavenger wells: Well #1 with 0.25 mgd, Well #2 with 0.25 mgd, and Well #3 with 0.25 mgd	
9	9 Two concurrent scavenger wells: Well #1 with 0.50 mgd and Well #2 with 0.50 mg	
10	D Four concurrent scavenger wells: Well #1 with 0.25 mgd, Well #2 with 0.25 mgd, Well #3 with 0.25 mgd, and Well #4 with 0.25 mgd	
11	Two sequential scavenger wells: Well #1 with 0.50 mgd and Well #2 with 0.25 mgd	
12	Two sequential scavenger wells: Well #1 with 0.50 mgd and Well #2 with 0.50 mgd	

Conclusions

- Stopping performance using multiple scavenger wells is similar to using a single scavenger well for the same total extraction rates.
- Using multiple wells may be preferred because it creates less drawdown around scavenger wells
- Scavenger wells under tested scenarios may have little negative impact on chloride concentration in EB-807A, EB-917 and EB-918 and may slightly increase saltwater crossing the Baton Rogue fault.
- Scavenger wells under tested scenarios may effectively reduce chloride concentration in Government wells (EB-413 and EB-771) and in the "connector well" (EB-1293).
- Using scavenger wells with less than 1 mgd of total extraction rates may add at least 50 years to the life of Lula wells.